Volume xx (20yy), Number z, pp. 1-5

Novel Applications of a “‘Scrolling”’-Algorithm

Abstract

We present and propose novel applications of a scrolling-algorithm which was often used in amiga games. It can be used both in
2D (tile- or pixel-based) and in the future perhaps in 3D (brick- or voxel-based). The current 2D-implementation is pixel-based
and therefore it can operate on hand crafted level bitmap images instead of using tiles. In the future it would be interesting to
use it for caching/scrolling of voxel data in realtime 3D voxel ray-tracing systems because like on the amiga the video memory
is limited. But this limitation could be overcome for some realtime applications where the camera position does not have to
Jjump arbitrarily but only continuous movement of the camera is needed to be done quickly. Camera rotation still could be done

arbitrarily then.

1. Introduction

The amiga home-computers of the 1980s and beginning 1990s
were well known for realtime games where 2D playfields ([Oos21])
were moved across the CRT screen. As described in the book
[Cop25] many programming beginners tried to implement games
themselves on these systems beginning with a genre sometimes
called “side-scroller” or “shoot em up”. One of the key parts of
these games is the so called “scrolling”. In our implementation
we implemented such a side-scrolling-game. But we don’t use so
called “tiles” or maps of “tiles” like it was usually done. Instead we
demonstrate that the video memory of a stock amiga500 computer
with 0,5 MB “chip” RAM and 0,5 MB “fast” RAM is sufficient to
implement such a game with freely hand crafted background levels.
Inspired by this we develop ideas how its scrolling-algorithm could
be used today for caching in voxel based 3D realtime raytracing.

2. Approach
2.1. Memory Efficient Scrolling Implementation in 2D

The key idea of the scrolling-algorithm relies on the fact that the
user of such a game does not see a difference between exact copies
of the screen-bitmap while playing the game. In the game the screen
seems to be simply scrolled from right to left. The level bitmap
is as wide as 5 screens (320*5 pixels in 16 colors). The height is
200 pixels (the height of NTSC without “interlace” on the amiga).
The scrolling-algorithm is only needed to save chip memory on
the amiga500. If there was no such limited amount of memory the
amiga could almost do it in hardware by simply setting some hard-
ware registers. But then the whole large level bitmap would have to
be stored 2 times (in 32 colors because of enemy blitting plane) -
once as front- and once as back-buffer. This is because amiga games
strongly rely on “double buffering” to avoid flickering screens. The
blitter has much more time to draw additional game objects (at least
1 video beam period of the whole screen) without flickering results

submitted to COMPUTER GRAPHICS Forum (8/2025).

Figure 1: screenshot of 2D scrolling game implementation

if double buffering is used. With the scrolling-algorithm smaller
32 color front- and back-buffers - which have only twice of the
screen width (640*200 pixels) - can be displayed and scrolled with
hardware-based register setting on the screen. To still see the whole
level throughout the game on the screen, one vertical screen-line
per frame is copied with the blitter chip of the amiga at right of
the visible part of the buffer and also at left of visible part of the
buffer. This does not cost much render-time since the blitter is used
and it is only one screen line - 200 pixels in y direction. After 320
pixels of scrolling in x-direction the hardware scrolling registers of
the amiga can simply jump back to the first half of the buffer. The
player of the game does not recognize this jump, as the two halves
of the buffer have been filled with exactly the same pixels! Nev-
ertheless the position from which the screen-lines are copied can
move continuously through the larger level bitmap throughout the
game.



20f5

Mandl / Novel Applications of a “Scrolling”’-Algorithm

Figure 2: screenshot of 2D scrolling game implementation

Figure 3: screenshot of 2D scrolling game implementation

Figure 4: screenshot of 2D scrolling game implementation

Figure 5: screenshot of 2D scrolling game implementation

LEVEL BITMAP

copy the same pixel line at screen start and end

scroll direction
e oleceoo=)

copy
Doubled DOUBLE BUFFER ~

\ buffer-end

\\ ,
- 'd

‘--’

Jump back into a copy
when screen reaches
buffer end

Figure 6: Illlustration of memory efficient single directional 2D

scrolling

submitted to COMPUTER GRAPHICS Forum (8/2025).



Mandl / Novel Applications of a “Scrolling”’-Algorithm 3of 5

STORAGE
. scroll-
\f \ direction
copy pi)ge\lines P4

\ O\ s \

Jump back into copy
when an end of the
outer square is hit by
the inner square

Figure 7: lllustration of imaginary memory efficient multi direc-
tional 2D scrolling

2.2. Thinking About Memory Efficient Multi Directional
Scrolling in 2D

Figure 7 illustrates memory efficient multi directional scrolling
which was not implemented by us yet. Probably you can imag-
ine that the same horizontal pixel lines would have to be copied
at the red and green lines and the same vertical pixel lines at the
yellow and blue lines from the here not shown much bigger level
bitmap - but somewhat repeated. All in all it must be made sure
that the here quadrupled double buffer always contains appropriate
screen copies beside the window which is shown on the screen so
that when the ends of the buffer are hit the screen window can jump
back into a copy of the screen.

2.3. Voxel-Data-Scrolling or -Caching Proposal in 3D

Nowadays 3D-realtime-ray-tracing-visualisations of segmentation
volumes have become possible on on consumer grade gaming hard-
ware ((WPD24],[Mus13] ...). Unfortunately due to the cubic scal-
ing of 3D voxel data these applications need a lot of video memory
([SHS24]). At the same time the difference between video memory
size and mass storage memory size is still in the order of a factor
of more or less than about 100 on most consumer systems. So to
overcome the limited amount of video memory, some caching or
prefetching between mass storage and video RAM would be fea-
sible to render larger scenes. As proposed in this paper this could
perhaps (not implemented by us yet) also be done using the key

submitted to COMPUTER GRAPHICS Forum (8/2025).

copy voxel plafjes per frame

A scroll-
’ direction

\ Somewhere in the ;/ideo memory I
‘o ’
S —— - /7
Jump back
into a copy

Figure 8: Illustration of the proposed 3D algorithm version with-
out multi-resolution nesting.

e The pyramid could symbolize the maximum sight of the ray-
tracing/marching camera. It can be rotated freely.

e The maximum possible sights with arbitrary rotation is repre-
sented by the sphere.

e The outer cube could symbolize a 3D voxel array in video mem-
ory and is equivalent to the doubled/quadrupled double buffer of
the 2D illustrations.

e The outer cube should be twice as large as the inner cube (in
every scrollable dimension) as in the 2D equivalents.

idea of the scrolling-algorithm from above but now in 3 dimensions
instead of 2. Figure 8§ illustrates the problem.

The key idea in 3D is that whenever the inner viewing cube hits
a boundary of the outer buffering cube the camera can be jumped
back by half of the dimension of the outer cube since the voxels
of the mass storage have been loaded at the planes intersecting the
faces of the inner cube so that the 3D game player/user doesn’t
recognize the jump. The exact mechanism of updating the outer
voxel cube on the planes intersecting the faces of the inner cube is
hard to describe without implementation and testing, but it should
work analog to the 2D versions described above. And it seems to
be clear that the maximum viewing/ray-marching (tracing) distance
should be set to half of the dimensions of the inner cube.

3. Evaluation

We only evaluated the single directional 2D version of the algo-
rithm. The 3D version is only proposed and not implemented yet.



4of5 Mandl / Novel Applications of a “Scrolling”’-Algorithm

The 2D game was run and tested in amiga emulators and on real
amiga500 machines. Both tests showed that the algorithm runs fast
with 50 fps if few other game action is on the screen or 25 fps if too
much other game action is on the screen. Slower frame rates were
not recognized. This can be observed by playing the game. Hard-
ware setup was a stock amiga500 machine with an expansion card
for the trap door slot featuring 0,5 MB of “fast” RAM. The kick-
start ROM version 1.3 was used. The monitor used was connected
with a SCART to HDMI adapter. As monitor we used a BENQ
monitor and other monitors like a 15khz capable NEC multi-sync
monitor connected over a DSUB-VGA-adapter.

4. Related Work

There was published a new book in 2025 ([Cop25]) which also
deals with such a game and contains also the single directional
2D version of the scrolling-algorithm. But it was implemented in
assembler and uses tiles. Our implementation is mostly done in
C [Oo0s19] (and some inline assembler [Oos21]) uses pixel lines
and operates on hand crafted levels instead of tile maps. And
the transfer to the multi directional 3D proposal is not contained
in this book. The book does contain assembly source for multi
directional scrolling too but - at the time of writing - probably
without memory efficient scrolling of large levels and also only
2D. Related to our work might also be papers dealing with voxel
data compression on the GPU because of limited video RAM
([PD24],[WPD24],[PKD]). It seems we have another approach
than these papers because we don’t use mainly compression and
explain the caching in a mainly geometry-based way. Compared
to [Mus13] our description is not thought yet for dynamic topol-
ogy. But the 2D implementation also features some dynamic ob-
jects which might be possible in 3D in future too without loosing
the ability to deal with large scenes. Furthermore there might exist
some closed source implementations of amiga games that imple-
ment not only the single directional memory efficient scrolling but
also memory efficient scrolling in multi directions but they mostly
also use tiles and are not 3D. Finally there might also exist voxel-
based 3D games but we don’t know one to feature voxel scenes
which exceed the memory limits of modern GPUs and real time
ray-tracing.

5. Discussion
5.1. Maximum View Distance

Additional multi-resolution nesting could be used to extend the
maximum distance of the sight by a factor of 2 for each new nest-
ing level. If this is really necessary depends on the applications
demands and on the speed tests that might be done in future after it
is implemented.

5.2. Empty Space Skipping

The additional multi-resolution nesting mentioned above would
also allow the renderer to implement empty space skipping since
this nesting could also be thought of as an acceleration data struc-
ture with some memory redundancy. This redundancy does not af-
fect the ray-marching speed but allows for easy caching of each
nesting level as described above and shown in 8.

5.3. Adapting to the Scrolling Speed

Above we implicitly assumed that the scrolling speed would be at
a constant rate of 1 pixel or voxel per frame. There might be ap-
plications that demand other scrolling speeds. In this case in the
2D version there would have to be copied not lines of pixels each
frame but rectangular blocks of pixels with a thickness depend-
ing on the scrolling speed. In the 3D version there would have to
be copied rectangular bricks instead of planes with a thickness de-
pending on the scrolling speed. If the copied data itself constists of
voxel cubes/bricks (as supposed later) further considerations might
be taken into account which also depend on the scrolling speed as
you can imagine.

5.4. Using Compression

Our approach as described so far might seem to be generally less
suitable for GPU-based (de-)compression than other approaches
([PD24],[PKD],[WPD24]) since the data from which the decom-
pression might happen is constantly updated whenever the camera
scrolls (and also when you think games with additional dynamic in-
teractions). Most practicable would perhaps be to decompress the
whole volume on the mass storage before the application starts, as
it might already be implemented in some implementations. Also
hindering plane-based (de-)compression with CPU or GPU might
be the fact that if more than one scrollable dimension is used the
same data would have to be decompressed as if it was seen from
different dimensions. This could perhaps be avoided if planes of
voxel cubes/bricks would be copied instead of planes of single vox-
els in 8 . In this case it might be of advantage not to copy exactly
one (repeated) plane of voxel cubes each frame but an amount of
voxel cubes proportional to the scrolling speed in every scrollable
dimension.

5.5. Using Pocedural Voxel Scenes (or Brick Maps or Hashed
Voxels)

Also procedural voxel scenes (or maps constisting of bricks or
other (re-)voxelizable things like hashed voxels [NZIS13]) could
be used with this algorithm. The usage of the mass storage might
not be necessary then. Instead the voxels on the planes intersecting
the faces of the inner cube of figure 8 would not be copied but
synthesized whenever the screen scrolls. Compared to on-the-fly-
synthesis during ray marching this might also be faster. But some
dynamic effects might require on-the-fly-synthesis or even more
calculations (additionally). If brick maps or voxel cube maps are
used the above metioned advantage of copying an amount of the
voxel cube/bricks per dimension depending on the scrolling speed
in every scrollable dimension per frame applies.

5.6. Using it for Light-Fields

Finally also light field or similar ([Lev96],[KDSD24]) data might
be scrolled/cached with the algorithm in the future. In this case the
empty space skipping would not be obligatory anymore since the
empty space would be filled with light data and no ray marching
would have to be done anymore (for static scenes). So it might also
render faster but it would most likely be less suitable for dynamic
(light) effects or objects.

submitted to COMPUTER GRAPHICS Forum (8/2025).



Mandl / Novel Applications of a “Scrolling”’-Algorithm

6. Conclusion

As the 3D version is not implemented and approved (by us) yet,
there is still much left to do. But the algorithm might still be a
promising idea or tool also for the future since it might still solve
also some 3D problems in a geometrically coherent and practicable
way.

References

[Cop25] Coprp1 S.: Amiga Assembly Game Programming. Printed by
Amazon Italia Logistica S.r.1. Torrazza Piemonte (TO), Italy, 2025. 1, 4

[KDSD24] KANDLBINDER L., DITTEBRANDT A., SCHIPEK A.,
DACHSBACHER C.: Optimizing Path Termination for Radiance Caching
Through Explicit Variance Trading. Proceedings of the ACM on Com-
puter Graphics and Interactive Techniques 7, 3 (2024). doi:10.
1145/3675381. 4

[Lev96] LEvOY M.: Light field rendering. ACM Trans. Graph. 15, 3
(1996), 289-302. 4

[Mus13] MUSETH K.: Vdb: High-resolution sparse volumes with dy-
namic topology. ACM Transactions on Graphics 32 (June 2013), 22
pages. Presented at SIGGRAPH 2013. doi:10.1145/2487228.
2487235.3,4

[NZIS13] NIESSNER M., ZOLLHOFER M., IZADI S., STAMMINGER
M.: Real-time 3d reconstruction at scale using voxel hashing. ACM
Transactions on Graphics (TOG) (2013). 4

[O0s19] OOSTERKAMP E.: Classic AmigaOS Programming. Printed in
Poland by Amazon Fullfillment Poland Sp. z o0.0., Wroclaw, 2019. 4

[O0s21] OOSTERKAMP E.: Bare-Metal Amiga Programming. Printed in
Poland by Amazon Fullfillment Poland Sp. z 0.0., Wroclaw, 2021. 1, 4

[PD24] PIOCHOWIAK M., DACHSBACHER C.: Fast compressed seg-
mentation volumes for scientific visualization. IEEE Transactions on
Visualization and Computer Graphics 30, 1 (2024), 12-22. doi:
10.1109/TVCG.2023.3326573. 4

[PKD] PIrocHOWIAK M., KURPICZ F., DACHSBACHER C.: Random
access segmentation volume compression for interactive volume ren-
dering. Computer Graphics Forum n/a, n/a, €70116. doi:https:
//doi.org/10.1111/cgf.70116. 4

[SHS24] STADTER L., HOFMANN N., STAMMINGER M.: Neural Volu-
metric Level of Detail for Path Tracing. In VMV2024 (2024), The Euro-
graphics Association. doi1:10.2312/vmv.20241197. 3

[WPD24] WERNER M., PIOCHOWIAK M., DACHSBACHER C.: SVDAG
Compression for Segmentation Volume Path Tracing. In Vision, Model-
ing, and Visualization (2024), Linsen L., Thies J., (Eds.), The Eurograph-
ics Association. doi:10.2312/vmv.20241196. 3,4

submitted to COMPUTER GRAPHICS Forum (8/2025).

50of5


https://doi.org/10.1145/3675381
https://doi.org/10.1145/3675381
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1109/TVCG.2023.3326573
https://doi.org/10.1109/TVCG.2023.3326573
https://doi.org/https://doi.org/10.1111/cgf.70116
https://doi.org/https://doi.org/10.1111/cgf.70116
https://doi.org/10.2312/vmv.20241197
https://doi.org/10.2312/vmv.20241196

